Mimicry Genetics

The diversity of Heliconius butterflies from Costa Rica.

Neotropical butterflies in the genus Heliconius are unpalatable, aposematic, and they have undergone a recent adaptive radiation in wing color patterns as a consequence of natural selection for Müllerian mimicry. We are working to identify the molecular basis of the genes that control wing pattern diversity in Heliconius and characterize the evolutionary history of divergence and convergence across the clade. This work relies on combination of high-resolution genetic mapping, fine-scale genome-wide association mapping, comparative analyses of gene expression, and genome editing. Much of this work has been done in concert with an international network of collaborative researchers and has resulted in rich genomic resources for Heliconius butterflies and identification of the key genes regulating wing pattern variation across the clade. Our work also explores the evolution and genetics of mimicry in other diverse butterfly clades, including Limenitis, Hypolimnas, Elymnias, and Papilio.

Selected Publications

VanKuren, N. W., S. I. Sheikh, D. Massardo, W. Lu and M. R. Kronforst. 2024. Supergene evolution via gain of auto-regulation.

VanKuren, N. W., M. M. Doellman, S. I. Sheikh, D. H. Palmer Droguett, D. Massardo and M. R. Kronforst. 2023. Acute and long-term consequences of co-opted doublesex on the development of mimetic butterfly color patterns. Molecular Biology and Evolution 40: msad196. bioRxiv preprint

Bayala, E. X., I. Cisneros, D. Massardo, N. W. VanKuren and M. R. Kronforst. 2023. Divergent expression of aristaless1 and aristaless2 during embryonic appendage and pupal wing development in butterflies. BMC Biology 21: 104. bioRxiv preprint

Bayala, E. X., N. VanKuren, D. Massardo and M. R. Kronforst. 2023. aristaless1 has a dual role in appendage formation and wing color specification during butterfly development. BMC Biology 21: 100. bioRxiv preprint

Sheikh, S. I., N. W. VanKuren and M. R. Kronforst. 2023. Butterfly mimicry rings run in circles. Proc. Natl. Acad. Sci. USA 120: e2220680120.

Bayala, E. X., I. Cisneros, D. Massardo, N. W. VanKuren and M. R. Kronforst. 2022. Divergent expression of aristaless1 and aristaless2 is associated with embryonic appendage and pupal wing development in butterflies. bioRxiv 2022.09.28.509918. bioRxiv preprint

VanKuren, N., M. M. Doellman, S. I. Sheikh, D. H. Palmer Droguett, D. Massardo and M. R. Kronforst. 2022. Conserved signaling pathways antagonize and synergize with co-opted doublesex to control development of novel mimetic butterfly wing patterns. bioRxiv 2022.09.20.508752. bioRxiv preprint

 

Bayala, E., N. VanKuren, D. Massardo and M. R. Kronforst. 2021. From the formation of embryonic appendages to the color of wings: Conserved and novel roles of aristaless1 in butterfly development. . bioRxiv preprint

Ruttenberg, D. M., N. W. VanKuren, S. Nallu, S-H Yen, D. Peggie, D. J. Lohman and M. R. Kronforst. 2021. The evolution and genetics of sexually dimorphic ‘dual’ mimicry in the butterfly Elymnias hypermnestra. Proceedings of Royal Society B 288: 20202192. UChicago Medicine  CCNY News  National Science Foundation  EurekAlert  Phys.org  newswise

VanKuren, N. W., D. Massardo, S. Nallu and M. R. Kronforst. 2019. Butterfly mimicry polymorphisms highlight phylogenetic limits of gene reuse in the evolution of diverse adaptations. Molecular Biology and Evolution 36: 2842-2853

Westerman, E., N. VanKuren, D. Massardo, A. Tenger-Trolander, W. Zhang, R. I. Hill, M. Perry, E. Bayala, K. Barr, N. Chamberlain, T. E. Douglas, N. Buerkle, S. E. Palmer and M. R. Kronforst. 2018. Aristaless controls butterfly wing color variation used in mimicry and mate choice. Current Biology 28: 3469-3474.  ScienceDaily  Futurity  Phys.org

Mazo-Vargas, A., C. Concha, L. Livraghi, D. Massardo, R. W. R. Wallbank, L. Zhang, J. D. Papador, D. Martinez-Najera, C. D. Jiggins, M. R. Kronforst, C. J. Breuker, R. D. Reed, N. H. Patel, W. O. McMillan and A. Martin. 2017. Macro-evolutionary shifts of WntA function potentiate butterfly wing pattern diversity. Proc. Natl. Acad. Sci. USA 114: 10701−10706. Nature News & Views  Washington Post  NY Times  Science Magazine  The Atlantic

Kronforst, M. R. and R. Papa. 2015. The functional basis of wing patterning in Heliconius butterflies: the molecules behind mimicry. Genetics 200: 1-19.  2015 Genetics Spotlight   Genes to Genomes

Gallant, J. R, V. E. Imhoff, A. Martin, W. K. Savage, N. L. Chamberlain, B. L. Pote, C. Peterson, G. E. Smith, B. Evans, R. D. Reed, M. R. Kronforst and S. P Mullen. 2014. Ancient homology underlies adaptive mimetic diversity across butterflies.  Nature Communications 5: 4817.  Futurity

Martin A., R. Papa, N. J. Nadeau, R. I. Hill, B. A. Counterman, G. Halder, C. D. Jiggins, M. R. Kronforst, A. D. Long, W. O. McMillan and R. D. Reed. 2012. Diversification of complex butterfly wing patterns by repeated regulatory evolution of a Wnt ligand.  Proc. Natl. Acad. Sci. USA 109: 12632-12637.

Reed, R. D., R. Papa, A. Martin, H. M. Hines, B. A. Counterman, C. Pardo-Diaz, C. D. Jiggins, N. L. Chamberlain, M. R. Kronforst, R. Chen, G. Halder, H. F. Nijhout, and W. O. McMillan. 2011.  optix drives the repeated convergent evolution of butterfly wing pattern mimicry.  Science 333: 1137-1141.  Science Perspective  New York Times  F1000 Opinions