Evo Devo


Evo Devo

Antibody stain showing aristaless1 (green) expressed during wing scale development in Heliconius cydno.

Evolutionary developmental biology, or evo-devo, is a field of study that focuses on comparative analyses of developmental processes in order to infer how development has evolved. We use the methods of developmental biology–including in situ hybridization, immunohistochemistry, spatial transcriptomics, and imaging–to compare development across species and populations. Much of this work is focused on understanding how specific genes and mutations ultimately generate distinct phenotypes, from the diverse mimetic color patterns of Heliconius and Papilio butterflies to the divergent mate preference behaviors of white and yellow winged Heliconius cydno.

Selected Publications

Bayala, E., N. VanKuren, D. Massardo and M. R. Kronforst. 2021. From the formation of embryonic appendages to the color of wings: Conserved and novel roles of aristaless1 in butterfly development. . bioRxiv preprint

Mallarino, R., M. Manceau and M. R. Kronforst. 2021. Editorial: Evo-Devo of Color Pattern Formation. Frontiers in Ecology and Evolution doi: 10.3389/fevo.2021.727516. Research Topic Home

Westerman, E., N. VanKuren, D. Massardo, A. Tenger-Trolander, W. Zhang, R. I. Hill, M. Perry, E. Bayala, K. Barr, N. Chamberlain, T. E. Douglas, N. Buerkle, S. E. Palmer and M. R. Kronforst. 2018. Aristaless controls butterfly wing color variation used in mimicry and mate choice. Current Biology 28: 3469-3474.  ScienceDaily  Futurity  Phys.org

Martin A., R. Papa, N. J. Nadeau, R. I. Hill, B. A. Counterman, G. Halder, C. D. Jiggins, M. R. Kronforst, A. D. Long, W. O. McMillan and R. D. Reed. 2012. Diversification of complex butterfly wing patterns by repeated regulatory evolution of a Wnt ligand.  Proc. Natl. Acad. Sci. USA 109: 12632-12637.

kronforst favicon


kronforst faviconThe ability to survey and compare genetic variation genome-wide has revolutionized the study of evolutionary genomics. We sequence and compare genomes across species, populations, and individuals to address questions related to phylogenetics, population genetic structure and demographics, the genetic basis of phenotypic variation, and to study the interplay between divergence and gene flow among populations and species. Thankfully, butterflies have small genomes (200-400 Mbp) so we can generate good reference assemblies with relative ease and population resequencing at scale is feasible. On the other hand, poison dart frogs have large genomes (6-9 Gbp) that are highly repetitive, which makes genome assembly and analysis more complicated. Methods for genome sequencing and assembly are constantly improving and these will continue to empower the genomic revolution in evolutionary biology.

Selected Publications

Grewe, F., M. R. Kronforst, N. E. Pierce and C. S. Moreau. 2021. Museum genomics reveals the Xerces blue butterfly (Glaucopsyche xerces) was a distinct species driven to extinction. Biology Letters 17: 20210123.  CNN  New York Times  WTTW  Smithsonian Magazine  Newsweek  Gizmodo

Ruttenberg, D. M., N. W. VanKuren, S. Nallu, S-H Yen, D. Peggie, D. J. Lohman and M. R. Kronforst. 2021. The evolution and genetics of sexually dimorphic ‘dual’ mimicry in the butterfly Elymnias hypermnestra. Proceedings of Royal Society B 288: 20202192. UChicago Medicine  CCNY News  National Science Foundation  EurekAlert  Phys.org  newswise

Massardo, D., N. W. VanKuren, S. Nallu, R. R. Ramos, P. Gusmão, K. L. Silva-Brandão, M. M. Brandão, M. B. Lion, A. V. L. Freitas, M. Z. Cardoso and M. R. Kronforst. 2020. The roles of hybridization and habitat fragmentation in the evolution of Brazil’s enigmatic longwing butterflies, Heliconius nattereri and H. hermathena. BMC Biology 18: 84.

Mullen, S. P., N. W. VanKuren, W. Zhang, S. Nallu, E. B. Kristiansen, Q. Wuyun, K. Liu, R. I. Hill, A. D. Briscoe and M. R. Kronforst. 2020. Disentangling population history and character evolution among hybridizing lineages. Molecular Biology and Evolution 37: 1295-1305.

Edelman, N. B., P. B. Frandsen, M. Miyagi, B. Clavijo, J. Davey, R. B. Dikow, G. Garcia-Accinelli, S. M. Van Belleghem, N. Patterson, D. E. Neafsey, R. Challis, S. Kumar, G. R. P. Moreira, C. Salazar, M. Chouteau, B. A. Counterman, R. Papa, M. Blaxter, R. D. Reed, K. K. Dasmahapatra, M. R. Kronforst, M. Joron, C. D. Jiggins, W. Owen McMillan, F. Di Palma, A. J. Blumberg, J. Wakeley, D. Jaffe and J. Mallet. 2019. Genomic architecture and introgression shape a butterfly radiation. Science 366: 594-599.  Science Perspective  Dryad Data  bioRxiv Preprint  ScienceDaily

Zhang, W, K. K. Dasmahapatra, J. Mallet, G. R. P. Moreira and M. R. Kronforst. 2016. Genome-wide introgression among distantly related Heliconius butterfly species.  Genome Biology 17: 25.

Li, X., D. Fan, W. Zhang, G. Liu, L. Zhang, L. Zhao, X. Fang, L. Chen, Y. Dong, Y. Chen, Y. Ding, R. Zhao, M. Feng, Y. Zhu, Y. Feng, X. Jiang, D. Zhu, H. Xiang, X. Feng, S. Li, J. Wang, G. Zhang, M. R. Kronforst and W. Wang. 2015. Outbred genome sequencing and CRISPR/Cas9 gene editing in butterflies.  Nature Communications 6: 8212.  IGTRCN

Heliconius Genome Consortium. 2012. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species.  Nature 487: 94-98.  New York Times  Harvard Gazette

Darli & Nick’s paper “The roles of hybridization and habitat fragmentation in the evolution of Brazil’s enigmatic longwing butterflies, Heliconius nattereri and H. hermathena” has been published in BMC Biology.

Darli & Nick’s paper “The roles of hybridization and habitat fragmentation in the evolution of Brazil’s enigmatic longwing butterflies, Heliconius nattereri and H. hermathena” has been published in BMC Biology.